

Fig. 2. View of the crystal structure, viewed parallel to the z axis.
An inquiry of the Cambridge Structural Database (1989) for octahedrally coordinated $\mathrm{Ni}^{1 \mathrm{I}}$ ions resulted in 104 compounds with $\mathrm{Ni}-\mathrm{O}$ and/or $\mathrm{Ni}-\mathrm{N}$ bonds. The average $\mathrm{Ni}-\mathrm{O}$ and $\mathrm{Ni}-\mathrm{N}$ distances are 2.084 and $2 \cdot 110 \AA$, respectively. They are significantly longer than in the square-planar configuration.

The coordination of the ligands around the Ni atom is fairly planar, and the bonding angles of the ligands are between 87.6 and $95 \cdot 1^{\circ}$. The Ni atom is $0.033 \AA$ out of the plane of its ligands. The angles between the planar organic groups are smaller than 8°. The Ni atom deviates from these planes by less than $0 \cdot 165 \AA$.

The piperidine ring has an almost ideal chair conformation: the perpendicular distances of the two

Table 3. Bond lengths (\AA) in some nickel(II) complexes

	(I)		(II)	(III)	(IV)
$\mathrm{C} 01-\mathrm{C} 02$	1.402 (6)	1.401 (7)	1.397 (5)	1.427 (6)	1.422 (8)
C01-C11	1.430 (5)	1.429 (4)	1.429 (4)	1.446 (6)	1.416 (8)
$\mathrm{C} 02-\mathrm{Ol}$	1.323 (5)	1.318 (5)	1.305 (4)	1.332 (5)	1.296 (5)
$\mathrm{C} 11-\mathrm{N} 1$	1.298 (5)	$1 \cdot 302(5)$	$1 \cdot 297$ (4)	1.279 (6)	1.292 (5)
C12-C13					1.410 (6)
$\mathrm{C} 12-\mathrm{N} 1$					1.434 (7)
$\mathrm{C} 13-\mathrm{O} 2$					1.334 (6)
$\mathrm{Nil}-\mathrm{N} 1$	1.913 (4)	$1 \cdot 918$ (4)	$1 \cdot 912$ (3)	1.941 (3)	1.848 (4)
$\mathrm{Nil}-\mathrm{N} 2$					1.947 (4)
$\mathrm{Nil}-\mathrm{Ol}$	1.829 (2)	1.828 (2)	1.832 (2)	1.828 (3)	1.804 (4)
$\mathrm{Nil}-\mathrm{O} 2$					1.830 (4)

(I) $\operatorname{Bis}\{N$-[(1,3-dioxolan-2-yl)methyl]salicylaldiminato $\}$ nickel(II); (II) bis $\{N$-[(1,3-dioxolan-2-yl)methyl]-2-hydroxy-1-naphthaldiminato\}nickel(II); (III) bis\{ N-[(1,3-dioxolan-2-yl)methyl]-3-hydroxy-2-naphthaldiminato\}nickel(II) (Fernandes-G., Rosales-Hoz, Rubio-Arroyo, Salcedo, Toscano \& Vela, 1987); (IV) present work.
para positioned chair atoms from the plane of the other four atoms of the six-membered ring are between 0.608 and $0.650 \AA$. The ideal theoretical value is $0.726 \AA$.

References

Cambridge Structural Database (1989). Users Manual. Cambridge Crystallographic Data Centre, Cambridge, England.
Fernandez-G., J. M., Rosales-Hoz, M. J., Rubio-Arroyo, M. F., Salcedo, R., Toscano, R. A. \& Vela, A. (1987). Inorg. Chem. 26, 349-357.
Kopfmann, G. \& Huber, R. (1968). Acta Cryst. A24, 348-351.
Maggio, F., Pizzino, T. \& Romano, V. (1974). Inorg. Nucl. Chem. Lett. 10, 1005-1008.
North, A. C. T., Philips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1983). SHELXTL Users Manual. Revision 4. Nicolet XRD Corporation, Madison, Wisconsin, USA.

Structure of
 μ-Pyrazine-bis[(diethylenetriamine- $\left.N, N^{\prime}, N^{\prime \prime}\right)($ diperchlorato- O)copper(II)]

By Duanjun Xu, Chenggang Chen, Yuanzhi Xu and Chaorong Cheng
Department of Chemistry, Zhejiang University, Hangzhou, People's Republic of China
and Jie Chen and Weizhong Tang
Shanghai Institute of Biochemistry, Academia Sinica, People's Republic of China

(Received 22 March 1990; accepted 20 June 1990)

observed reflections. The crystal structure consists of discrete binuclear molecules. The coordination geometry around the Cu^{11} atom is a tetragonally elongated octahedron. The chelate rings of the diethylenetriamine ligand adopt a $\delta \lambda$ conformation. The bridge ligand pyrazine ring cants relative to the equatorial coordination plane of the Cu^{11} atom with a dihedral angle of 58.8°, and this may provide a pathway for a magnetic superexchange interaction between the two $\mathrm{Cu}^{\mathrm{II}}$ atoms.

Introduction. In the last decade, a number of binuclear transition-metal complexes in which the metal ions are bridged by heterocyclic aromatic diamines, especially pyrazine or imidazolate, have been investigated as models of metalloenzymes (Matsumoto, Ooi, Nakao, Mori \& Nakahara, 1981; Richardson \& Hatfield, 1975). The main topic under investigation is the effectiveness of a bridge ligand in propagating a spin-spin exchange interaction between two transition-metal ions. Some investigations have shown the relationship between structure and magnetic superexchange interaction (Coronado, Drillon \& Beltran, 1984). In this paper we report the structure of a binuclear copper(II) complex, bridged by pyrazine, which exhibits a spin-spin exchange interaction in its ESR spectrum.

Experimental. $4 \mathrm{mmol} \mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and 4 mmol diethylenetriamine (dien) were mixed in methanol, and, after filtration, 2 mmol pyrazine (pyz) was added to the solution. The mixture was refluxed for three hours. Dark blue crystals were grown by slow evaporation at room temperature.
A well shaped crystal of μ-pyz- $\left[\mathrm{Cu}(\mathrm{dien})\left(\mathrm{ClO}_{4}\right)_{2}\right]_{2}$ with dimensions $0.10 \times 0.22 \times 0.30 \mathrm{~mm}$ was used for data collection. Preliminary examination of the crystal and data collection were performed on an EnrafNonius CAD-4 diffractometer. Unit-cell parameters were determined by a least-squares fit of the 2θ values of 25 reflections ($20 \leq 2 \theta \leq 30^{\circ}$). Intensity data were collected by $\omega-2 \theta$ scans using graphitemonochromated Mo $K \alpha$ radiation, the scan rate was variable from 2.0 to $5.5^{\circ} \mathrm{min}^{-1}$ and the scan width was $\Delta \omega=(0.80+0.35 \tan \theta)^{\circ}$. A total of 2985 independent reflections were measured with 2θ up to 54° and index range $h=-9$ to $0, k=-10$ to $10, l=$ -16 to 16.2489 observed reflections $\left[\left|F_{o}\right| \geq 3 \sigma\left(F_{o}\right)\right.$] were employed in the refinements. Three standard reflections were measured every hour, no intensity variation was observed. Lorentz and polarization corrections were applied, no absorption or extinction corrections.

Structure was solved by the Patterson method followed by Fourier syntheses. For refinement, the function $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ was minimized by blockdiagonal least squares with the program $H B L S-V$
(Ashida, 1979), and unit weights were used. In the final refinement stage, the H atoms were placed $1.0 \AA$ from bonded non-H atoms and refined isotropically, while all non-H atoms were refined anisotropically. Final refinement reached convergence with $R=0.052$ and $w R=0.055$. A final difference map showed two highest peaks $\left(1.0 \mathrm{e}^{-3}\right)$ within $1.0 \AA$ of the Cu^{11} atom position. $S=1.52$ and $(\Delta / \sigma)_{\text {max }}=0.55$ for non-H atoms. Atomic scattering factors were taken from International Tables for X-ray Crystallography (1974, Vol. IV, p. 71). All computations were performed on a Honeywell DPS8/49 computer at the Computation Center, Zhejiang Univ., People's Republic of China.

Discussion. The atomic coordinates and thermal parameters for non-H atoms are listed in Table 1,* and bond distances and angles are given in Table 2. The crystal structure consists of discrete binuclear molecules as shown in Fig. 1.
The molecule is located about a crystallographic inversion centre. The coordination geometry around the Cu^{11} atom is a tetragonally elongated octahedron with four N atoms in the $x y$ plane of the Cu^{11} atom and two O atoms in the axial direction. The coordination bonding is not strong, the observed $\mathrm{Cu}-\mathrm{N}$ mean distance being $1.999 \AA$. A tridentate dien ligand chelates meridionally to the Cu^{11} atom, and the two chelated rings adopt a $\delta \lambda$ conformation. It is noteworthy that the $\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(3)$ bond angle of $125.4(6)^{\circ}$ is much larger than those found in other complexes containing the dien ligand (Huang, 1989; Melanson \& Rochon, 1978). The bridge ligand pyrazine links two Cu^{11} atoms by means of two terminal N atoms. The bond distances in the pyrazine ligand agree well with those observed in the pyrazine molecule (Wheatley, 1957). The C(5)-$\mathrm{N}(4)-\mathrm{C}(6)$ (third atom at $1-x,-y, 1-z$) bond angle falls in the range reported previously (Wheatley, 1957; Belford, Fenton \& Truter, 1974; Darriet, Haddad, Duesler \& Hendrickson, 1979; Xu, Chen, Xu \& Zhou, 1987; Santoro, Mighell \& Reimann, 1970). Comparison of those angles and $\mathrm{Cu}-\mathrm{N}(\mathrm{pyz})$ bond distances shows that the shorter the bond distance, the larger the bond angle. This is probably due to the involvement of the lone pair electrons on the N atom in bonding to the $\mathrm{Cu}^{1 \mathrm{II}}$ atom. So stronger $\mathrm{Cu}-\mathrm{N}(\mathrm{pyz})$ bonding is accompanied by weaker repulsion between the lone-pair electron of the N atom and the pyz ring electrons, which results in a

[^0]Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters of non- H atoms with e.s.d.'s in parentheses

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)^{*}$
Cu	$0 \cdot 19417$ (9)	0.09081 (8)	$0 \cdot 29207$ (5)	2.33
$\mathrm{Cl}(1)$	-0.2033 (2)	0.3657 (2)	0.4231 (1)	$2 \cdot 9$
$\mathrm{Cl}(2)$	0.4864 (2)	-0.2471 (2)	$0 \cdot 1225$ (1)	$3 \cdot 3$
$\mathrm{O}(1)$	-0.0472 (6)	$0 \cdot 2133$ (6)	0.4381 (4)	$4 \cdot 3$
$\mathrm{O}(2)$	-0.2826 (6)	$0 \cdot 4152$ (6)	$0 \cdot 5237$ (4)	$4 \cdot 1$
O(3)	-0.3381 (7)	$0 \cdot 3168$ (8)	0.3562 (4)	$5 \cdot 1$
$\mathrm{O}(4)$	-0.1358 (9)	$0 \cdot 5034$ (7)	0.3725 (4)	6.7
O(5)	0.6798 (7)	-0.3162 (8)	0.0993 (5)	$5 \cdot 5$
$\mathrm{O}(6)$	0.3799 (11)	-0.2345 (10)	0.0307 (5)	$8 \cdot 3$
O(7)	0.4643 (7)	-0.0771 (6)	$0 \cdot 1690$ (5)	$5 \cdot 3$
O(8)	0.4250 (8)	-0.3569 (7)	$0 \cdot 2016$ (5)	$6 \cdot 3$
N(1)	0.2804 (9)	$0 \cdot 2995$ (8)	$0 \cdot 2331$ (6)	$6 \cdot 3$
N(2)	0.0013 (8)	$0 \cdot 1528$ (7)	$0 \cdot 1776$ (4)	$4 \cdot 5$
N(3)	0.0871 (6)	-0.1222 (6)	0.3173 (4)	$2 \cdot 9$
N(4)	0.3771 (6)	0.0365 (5)	0.4145 (3)	$2 \cdot 1$
C(1)	0.1565 (10)	0.3878 (8)	$0 \cdot 1483$ (5)	4.1
C(2)	0.0530 (11)	0.2676 (11)	0.1006 (6)	$6 \cdot 0$
C(3)	-0.0748 (10)	0.0036 (9)	$0 \cdot 1563$ (6)	$4 \cdot 6$
C(4)	-0.0799 (10)	-0.1080 (9)	0.2501 (5)	$4 \cdot 5$
C(5)	0.3729 (7)	0.1514 (7)	0.4894 (4)	2.4
C(6)	0.4928 (7)	$0 \cdot 1173$ (7)	0.5753 (4)	$2 \cdot 3$
* As defined by Hamilton (1959).				

larger $\mathrm{C}(5)-\mathrm{N}(4)-\mathrm{C}(6)$ bond angle. In the axial direction of the $\mathrm{Cu}^{\mathrm{II}}$ atom, two perchlorate groups exist with $\mathrm{Cu}-\mathrm{O}$ distances of 2.566 and $2.604 \AA$, which are much longer than the distance of $2.37 \AA$ in $\mathrm{Cu}(\mathrm{pyz})_{2}\left(\mathrm{ClO}_{4}\right)_{2}$ (Darriet, Haddad, Duesler \& Hendrickson, 1979). But the fact that the bond distances $\mathrm{Cl}(1)-\mathrm{O}(1) \quad[1.444(5) \AA]$ and $\mathrm{Cl}(2)-\mathrm{O}(7)$ $[1.446$ (6) \AA] are significantly longer than the other $\mathrm{Cl}-\mathrm{O}$ bond distances suggests that $\mathrm{O}(1)$ and $\mathrm{O}(7)$ are actually coordinated to the $\mathrm{Cu}^{\mathrm{II}}$ atoms.

The least-squares analysis indicates that the pyrazine ring in the present complex is essentially planar, and canted relative to the $x y$ plane of the $\mathrm{Cu}^{\mathrm{II}}$ atom with a dihedral angle of 58.8°. Such a tilt seems to be the result of short contacts between the pyz ring and the neighbouring coordinated atoms as verified by the $\mathrm{O}(1) \cdots \mathrm{C}(5)$ distance of 3.028 (7) \AA. The ESR spectrum of a powdered sample of the present crystal (Chen, 1989) implies an exchange interaction between the unpaired electrons of two $\mathrm{Cu}^{\mathrm{II}}$ atoms. Because the nearest distance between the Cu^{11} atoms is $6.99 \AA$ in the crystal, the exchange interaction should be a superexchange propagated through the bridge ligand. According to the superexchange mechanism proposed by Richardson \& Hatfield (1975), inclination of the bridge ligand to the $x y$ coordination plane of the $\mathrm{Cu}^{\mathrm{II}}$ atom might provide a π propagating pathway for exchange interaction between the two unpaired electrons of the $\mathrm{Cu}^{\mathrm{II}}$ atoms.

This work was supported by the National Natural Science Foundation of China. The authors are

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

Fig. 1. Crystal structure viewed along the b^{*} axis with the atomic numbering system; H atoms are omitted for clarity.
deeply grateful to Professor N. Kasai and his coworkers in Osaka University for providing the computer program library.

References

Ashida, T. (1979). HBLSS-V. The Universal Crystallographic Computing System-Osaka. The Computation Center, Osaka Univ., Japan.
Belford, R. C. E., Fenton, D. E. \& Truter, M. R. (1974). J. Chem. Soc. Dalton Trans. pp. 17-24.
Chen, C. (1989). Master Degree Thesis, Zhejiang Univ., People's Republic of China
Coronado, E., Drillon, M. \& Beltran, D. (1984). Inorg. Chim. Acta, 82, 13-17.
darriet, J., Haddad, M. S., Duesler, E. N. \& Hendrickson, D. N. (1979). Inorg. Chem. 18, 2679-2682.

Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Huang, L. (1989). Master Degree Thesis, Zhejiang Univ., People's Republic of China.
Matsumoto, K., Ooi, S., Nakao, Y., Mori, W. \& Nakahara, A. (1981). J. Chem. Soc. Dalton Trans. pp. 2045-2048.

Melanson, R. \& Rochon, F. D. (1978). Acta Cryst. B34, 35943598.

Richardson, H. W. \& Hatfield, W. E. (1975). J. Am. Chem. Soc. 98, 835-839.
Santoro, A., Mighell, A. D. \& Reimann, W. (1970). Acta Cryst. B26, 979-984.
Wheatley, P. J. (1957). Acta Cryst. 10, 182-187.
Xu, D., Chen, C., Xu, Y. \& Zhou, K. (1987). J. Struct. Chem. 6(1), 39-42.

Acta Cryst. (1991). C47, 75-78

Structure of Copper(II) Terephthalate Trihydrate

By Sénida Cueto
Technisch-Chemisches Laboratorium, ETH-Z, CH-8092 Zürich, Switzerland
Volker Gramlich and Walter Petter
Institut für Kristallographie, ETH-Z, CH-8092 Zürich, Switzerland

Franz S. Rys
Technisch-Chemisches Laboratorium, ETH-Z, CH-8092 Zürich, Switzerland and ERCOFTAC, EPF-L, CH-1015 Lausanne, Switzerland
and Paul Rys
Technisch-Chemisches Laboratorium, ETH-Z, CH-8092 Zürich, Switzerland
(Received 5 January 1990; accepted 31 May 1990)

Abstract

Cu}\left[\mathrm{Cu}_{6} \mathrm{H}_{4}(\mathrm{COO})_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=281 \cdot 71\), orthorhombic, Pbcn, $a=6.869$ (3), $b=22 \cdot 985$ (11), $c=6.298(3) \AA, \quad V=994.4(14) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.88 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \quad \mu=$ $2.22 \mathrm{~mm}^{-1}, F(000)=572$, room temperature, $R=$ 0.036 for 812 unique reflections having $|F|>$ $4 \sigma(|F|)$. The Cu atoms are coordinated by two carboxylate O atoms and four water-molecule O atoms in a significantly distorted octahedral arrangement. There are three different coordination $\mathrm{Cu}-\mathrm{O}$ distances: two of 1.925 (2) \AA with the two carboxylate O atoms, two of 1.981 (2) \AA and the largest two of 2.479 (2) \AA. The octahedra share common edges with octahedra of two neighbouring Cu atoms to form zigzag chains in the \mathbf{c} direction. The chains are linked by hydrogen bonds and in addition the resulting layers are held together via hydrogen bridges building a three-dimensional network.

0108-2701/91/010075-04\$03.00

Introduction. In the search for new metal-aromatic compounds with a tetra- or hexacoordinated copper(II) atom, copper(II) terephthalate trihydrate (CuTT) was synthesized by polycondensation and obtained in single-crystalline form. The X-ray structure analysis revealed a regularly crystallized structure characterized by zigzag-like polymer chains described below. As expected, the compound is highly insulating in the range between room and liquid-nitrogen temperature, thus showing neither intrinsic conduction nor significant charge-carrier concentration. Previous reports on structures of copper carboxylates are known where Cu atoms are joined via four carboxylate groups forming dimers, like copper acetate tetrahydrate with a $\mathrm{Cu}-\mathrm{Cu}$ distance of less than $3 \AA$ (van Niekerk \& Shoening, 1953), or copper arylcarboxylates forming polymer networks with $\mathrm{Cu}-\mathrm{Cu}$ distances larger than $3 \AA$, like copper ben-

[^0]: * Lists of structure factors, anisotropic thermal parameters, H-atom parameters and selected least-squares-planes data have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53317 (13 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

